

SJTU SPEECH LAB 上海交通大學智附派著實族空

Interspeech 2018 paper review

Zhehuai Chen

Opening

"Live as if you were to die tomorrow. Learn as if you were to live forever." Mahatma Gandhi

Learn, Engage, Inspire, and Enjoy INTERSPEECH-2018!

Life in India

Video

Å 1

6

•

经济

Machine Speech Chain with One-shot Speaker Adaptation

Andros Tjandra^{1,2}, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

¹Nara Institute of Science and Technology, Graduate School of Information Science, Japan ²RIKEN, Center for Advanced Intelligence Project AIP, Japan

Figure 1: (a) Overview of proposed machine speech chain architecture with speaker recognition; (b) Unrolled process with only speech utterances and no text transcription (speech \rightarrow [ASR,SPKREC] \rightarrow [text + speaker vector] \rightarrow TTS \rightarrow speech); (c) Unrolled process with only text but no corresponding speech utterance ([text + speaker vector by sampling SPKREC] \rightarrow TTS \rightarrow speech \rightarrow ASR \rightarrow text). Note: grayed box is the original speech chain mechanism.

■ "闭环学习"

Sample speaker vector to do multi-style training

Recognizing Overlapped Speech in Meetings: A Multichannel Separation Approach Using Neural Networks

Takuya Yoshioka, Hakan Erdogan, Zhuo Chen, Xiong Xiao, and Fil Alleva

Microsoft AI and Research, One Microsoft Way, Redmond, WA, USA

REAL conference task

MULTI-MICROPHONE NEURAL SPEECH SEPARATION FOR FAR-FIELD MULTI-TALKER SPEECH RECOGNITION

Takuya Yoshioka, Hakan Erdogan, Zhuo Chen, Fil Alleva

Microsoft AI and Research, One Microsoft Way, Redmond, WA

- Spectral and spatial inputs:
 - The magnitude spectra
 - Inter-microphone phrase diff (IPD) to the first one
- Mask-driven beamforming outputs (separate ASR)
 - Mask-driven MVDR beamforming

Figure 3: SSN model and the network for training it.

 DOA differences to decide num. of speakers

[23] C. Boeddeker, H. Erdogan, T. Yoshioka, and R. Haeb-Umbach, "Exploring practical aspects of neural mask-based beamforming for far-field speech recognition," in *Proc. Int. Conf. Acoust.*, *Speech, Signal Process.*, 2018, accepted.

Correlation Networks for Speaker Normalization in Automatic Speech Recognition

Rini Sharon A, Sandeep Reddy Kothinti, Srinivasan Umesh

Indian Institute of Technology Madras, India

- Motivation:
 - Fmllr needs 2-pass decoding
 - i-vector needs long utt.s
- Proposed decoding pipeline:

- Training
 - Reconstruct fmllr from itself
 - Reconstruct fmllr from fbank
 - Reconstruct fmllr from fmllr+fbank
 - Maximize the correlation between fmllr and fban

 $+ L_{mse}([V_1, none], V_2^{rec})$

 $-\lambda \times L_{corr}(\mathbb{P}(V_1),\mathbb{P}(V_2))$

 $+ L_{mse}([V_1, V_2], V_2^{rec})$

 $Loss = L_{mse}([none, V_2], V_2^{rec})$

I raining
• Reconstruct fmllr from
itself
• Reconstruct fmllr from
fbank
• Reconstruct fmllr from
fmllr+fbank
• Maximize the correlation
between fmllr and fbank

$$Loss = L_{mse}([none, V_2], V_2^{rec})$$

 $+ L_{mse}([V_1, none], V_2^{rec})$
 $+ L_{mse}([V_1, Ne], V_2^{rec})$
 $-\lambda \times L_{corr}(\mathbb{P}(V_1), \mathbb{P}(V_2))$
 $L_{corr}(A, B) = \frac{\sum_{i=1}^{N} (A_i - \overline{A})(B_i - \overline{B})}{\sqrt{\sum_{i=1}^{N} (A_i - \overline{A})^2 \sum_{i=1}^{N} (B_i - \overline{B})^2}}$

	TIMIT				SWBD-33				WSJ-84	
Input features to	spk-norm		utt-norm		spk-norm eval2000		utt-norm eval2000		spk-norm	utt-norm
DIAN ACOUSTIC MOUCH	test	dev	test	dev	swbd	callhm	swbd	callhm	eval	eval
MFCC	20.3	18.9	21.4	20.0	23.7	35.5	24.5	35.7	14.26	15.86
MFCC + i-vectors	20.2	18.3	20.9	19.6	23.4	35.2	24.1	35.5	14.0	15.61
Filterbank	20.0	18.4	21.4	20.7	22.8	34.6	24.3	34.6	13.74	14.96
Filterbank + i-vectors	19.5	17.9	21.6	19.3	22.04	33.6	23.6	34.8	13.57	14.19
fMLLR	18.3	17.4	25.4	24.8	20.8	31.4	25.0	40.1	11.56	18.24
fMLLR + i-vectors	18.1	17.1	25.1	23.8	21.02	31.4	24.7	40.1	11.36	18.04
CorrNet Models										
CorrNet (Recon fM←fb)	19.6	18.0	19.7	18.4	21.9	33.7	21.8	35.0	12.75	13.39
CorrNet (All loss)	19.4	17.9	19.0	18.3	21.53	32.5	21.9	34.5	12.64	13.29
CorrNet (Weighted loss)	19.4	17.8	19.0	18.3	21.5	32.6	21.7	34.5	12.58	13.23
Combined Scoring	18.8	17.7	18.9	18.2	21.1	32.5	21.3	34.1	12.52	13.17

BUT, why does it work?

A Novel Approach for Effective Recognition of the Code-Switched Data on Monolingual Language Model

Ganji Sreeram, Rohit Sinha

Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati, Guwahati - 781039, India

Homophone Identification and Merging for Code-switched Speech Recognition

Brij Mohan Lal Srivastava and Sunayana Sitaram

Microsoft Research India Mandarin-English Code-switching Speech Recognition

Haihua Xu¹, Van Tung Pham^{1,2}, Zin Tun Kyaw², Zhi Hao Lim¹, Eng Siong Chng^{1,2}, Haizhou Li³

¹Temasek Laboratories, Nanyang Technological University, Singapore ²School of Computer Science and Engineering, Nanyang Technological University, Singapore ³Department of Electrical and Computer Engineering, National University of Singapore, Singapore

Study of Semi-supervised Approaches to Improving English-Mandarin Code-Switching Speech Recognition

Pengcheng Guo^{1,2}, Haihua Xu², Lei Xie^{1,*}, Eng Siong Chng^{2,3}

¹ School of Computer Science, Northwestern Polytechnical University, Xi'an, China
 ² Temasek Laboratories, Nanyang Technological University, Singapore
 ³ School of Computer Science and Engineering, Nanyang Technological University, Singapore

- Text normalization
 - Numbers, temperatures, etc..
 - e.g.那家酒店的顾客好评率在4.2分; he gave 4.2 points for his score
 - Homophones identification & merging
 - Clustering based on pronunciation of the words
 - e.g. 酷 k u4
 - & cool k u4 r
- Lexicon learning
 - Collect alternative pronunciations from lexicon, G2P and phonetic decoding
 - Prune alternative pronunciations based on a data likelihood based criterion
 - Use new lexicon, change to a semi-supervised problem (re-decode & re-train)

- Get word-pair in 2 languages
 - Do translation
 - Get word-pairs from the translation alignment
 - e.g. 好酷 赞 棒呆 good cool brilliant perfect
- Cluster the low freq. words → group them together as a class
 Use word-pairs all as input of NNLM (Factored LM)

- Get word-pair in 2 languages
 - Do translation

Get word-pairs from the translation alignment
 e.g. 好酷 赞 棒呆 good cool brilliant perfect

- Cluster the low freq. words \rightarrow group them together as a class
- Use word-pairs all as input of NNLM (Factored LM)
- Solve the sparsity in code-switching LM
 - Class-LM based on word pairs & word class
 - Generate text to train the normal LM
 - Do some singleton phrase substitution for all above LMs
 e.g. 我 要 <u>收听</u> Taylor Swift 的 歌
 - & 我 要 <u>欣赏</u> Taylor Swift 的 歌

Some papers for engineering

- 1. Improved Training of End-to-end Attention Models for Speech Recognition
- 2. End-to-end Speech Recognition Using Lattice-free MMI
- 3. Compression of End-to-End Models
- 4. Robust TDOA Estimation Based on Time-Frequency Masking and Deep Neural Networks
- 5. Comparison of an End-to-end Trainable Dialogue System with a Modular Statistical Dialogue System
- 6. Improving Attention Based Sequence-to-Sequence Models for End-to-End English Conversational Speech Recognition
- 7. Acoustic Modeling with DFSMN-CTC and Joint CTC-CE Learning
- 8. A Multistage Training Framework for Acoustic-to-Word Model
- 9. Compressing End-to-end ASR Networks by Tensor-Train Decomposition
- 10. Phase-locked Loop Based Phase Estimation in Single Channel Speech Enhancement
- 11. Cycle-Consistent Speech Enhancement
- 12. Non-Uniform Spectral Smoothing for Robust Children's Speech Recognition
- 13. Acoustic Modeling with Densely Connected Residual Network for Multichannel Speech Recognition
- 14. Attention-based End-to-End Models for Small-Footprint Keyword Spotting
- 15. Automatic Speech Recognition System Development in the "Wild"
- 16. An Investigation of Mixup Training Strategies for Acoustic Models in ASR
- 17. A Probability Weighted Beamformer for Noise Robust ASR
- 18. Investigations on Data Augmentation and Loss Functions for Deep Learning Based Speech-Background Separation

